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When an alternating electric field is applied to a colloid the particles oscillate at a 
velocity proportional to the applied field strength. The complex constant of 
proportionality is termed the dynamic mobility (O’Brien 1988). Although this quantity 
can now be determined from electroacoustic measurements in suspensions of arbitrary 
concentration (O’Brien 1990), the theory for interpreting these measurements in terms 
of the size and charge of the particles is limited to dilute suspensions. 

In this paper we derive an expression for the O($) correction to the dynamic mobility 
in a random suspension of uniform spheres with volume fraction $. It is assumed that 
the particle radius is much greater than the double layer thickness but much smaller 
than the sound wavelength. The mobility is calculated using O’Brien’s 1979 
macroscopic boundary integral technique. This method ensures a correct mathematical 
formulation of the problem, and yields an absolutely convergent expression for the 
average particle velocity. The evaluation of this expression to O($) involves the 
determination of the velocities of an isolated pair of particles at various separations 
and frequencies of oscillation. These velocities are computed using the collocation 
technique and the O($) correction to the dynamic mobility is then obtained by 
numerically integrating over all particle separations. 

1. Introduction 
An alternating electric field causes colloidal particles to move with a sinusoidal 

velocity which depends on their charge and size, and on the frequency of the applied 
field. In this paper we are concerned with the calculation of the particle velocity in a 
non-dilute suspension of uniform, non-conducting spheres. 

As in other suspension calculations (Batchelor 1974) we will represent macroscopic 
quantities as averages over a sample volume V containing a representative sample of 
suspension. These averages will be denoted by angle brackets. For example the 
macroscopic electric field ( E )  is defined as 

( E )  = - 1 JEdV, 
V 

where E is the local electric field. The sample volume V can be any shape, but it must 
be small compared to the macroscopic dimensions of the suspension or the sound 
wavelength at the applied frequency. 

In the analysis, all time-varying quantities will be written in complex form, with an 
etUt variation. 

The average velocity ( U )  of the particles in V depends on the electric field ( E ) ,  but 
it is not uniquely determined by ( E ) ,  for in addition to the motion driven by the local 
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field, there is a component due to the local bulk motion of the suspension, which tends 
to convect the particle back and forth. This local bulk motion is characterized by the 
macroscopic momentum per unit mass in V, denoted by u, where (O’Brien 1990) 

Here p and u are the local density and velocity respectively. 
From the linearity of the governing equations (see $3) it follows that the 

contributions from the electric field and the local bulk motion are independent and are 
proportional to the corresponding driving field. Hence for a statistically isotropic 
suspension the particle velocity (U) is given by an expression of the form 

( u> = ,uu,<m + yn, (1.2) 
where ,uo and y are suspension transport properties.? ,uq is the dynamic mobility. The 
quantity y is another type of mobility, associated with the particle motion in a 
macroscopic sound wave. 

Our aim is to calculate ,uD correct to O(6). From (1.2) it can be seen that p D  is the 
velocity per unit electric field for ii = 0. Although this definition appears to be a simple 
extension of the definition for the electrophoretic mobility ,u in a static field, the latter 
quantity is different, for ,u is defined under conditions of zero volume-average velocity 
( u )  (Chen & Keh 1988), rather than zero momentum. The two velocities a and ( u )  are 
not equal in general, for from the above definition of n we see that 

where p1 is the liquid density and p1 + Ap is the particle density. In the zero frequency 
limit the coefficient y in (1.2) approaches unity, since there are no inertia forces to cause 
the particles to lag the liquid motion, and thus from (1.2) and (1.3) we find that the static 
mobility is related to the dynamic mobility by 

PD ,u = lim 
W O  1-6- AP . 

<P> 

As the particles oscillate backwards and forwards they generate macroscopic sound 
waves. This phenomenon of sound wave generation in a colloid by an applied electric 
field is called the electrokinetic sonic amplitude, or ESA effect (Oja, Petersen & Cannon 
1985). The dynamic mobility can be determined experimentally by measuring the ESA 
or the reverse effect of electric fields generated by an applied sound wave. Formulae for 
determining ,uD from such measurements are given in O’Brien (1988; equations (4.4) 
and (5.6)) for the case of a dilute suspension in a parallel-plate electrode device. For 
concentrated suspensions the corresponding formula for ,uD can be obtained by solving 
the differential equations for ( E ) ,  u and the macroscopic pressure distribution set out 
in $5 of O’Brien (1990). 

Although it is now possible to determine ,uD from such measurements in suspensions 
of arbitrary concentration, the theory for determining particle size and charge from the 

t By using similar arguments to those used in the derivation of the electroacoustic reciprocal 
relation in the Appendix to O’Brien (1990), it is possible to derive a macroscopic uniqueness theorem 
which proves that the average velocity (U) is uniquely determined by the local macroscopic electric 
field and momentum per unit mass. Thus there are no other driving terms in equation (1.2). 
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measured pD is limited to dilute suspensions (O’Brien 1988; Loewenberg & OBrien 
1992). In this paper we take the first step towards a theory for concentrated suspensions 
by calculating the O(q5) correction to the dynamic mobility. 

2. Outline of the paper 
In the following section we set out the equations and boundary conditions for the 

local velocity, pressure and electric fields in the suspension. 
The O(q5) correction for ,uD is obtained here using the macroscopic boundary integral 

technique devised by O’Brien (1979). The procedure begins, in $4, with a Green’s 
function solution for the local velocity field in terms of integrals over the particles and 
over a macroscopic boundary enclosing the suspension sample. The integrals involve 
the local stress and velocity. In the macroscopic boundary integral these quantities can 
be replaced by the macroscopic pressure and velocity and the integral converted to a 
volume integral over the sample. A similar type of formula is also obtained for the local 
electric field. In 4 5 these expressions are combined with a FaxCn formula for the motion 
of a sphere in ambient electric and flow fields. This yields an exact expression for the 
velocity of a particle in terms of integrals over the surfaces of the other particles in the 
suspension. The contribution from the particles, which would result in a non- 
convergent sum if taken in isolation, is cancelled at large distances by the contribution 
from the macroscopic boundary integral. In $6 we take the average of this formula over 
an ensemble of macroscopically identical suspensions to obtain the O(#) correction to 
pD in terms of an integral involving the dynamic mobility of an isolated pair of spheres 
in an applied electric field. In 97 we show how the dynamic mobility of the sphere pair 
can be determined from the more familiar hydrodynamic resistance tensor of a pair of 
uncharged spheres. The calculation of this resistance tensor is described in the 
Appendix. The form of the dynamic mobility of a sphere pair as a function of 
separation and frequency is described in 88. Finally, in 99 we evaluate the integral of 
the dynamic mobility over all separations to obtain the O(#) correction to pn. 

3. The mathematical statement of the problem 
As mentioned above, the colloidal particles move in an electric field because they are 

charged. This charge, which usually resides on the particle surface, is balanced by an 
equal and opposite charge on the ions in the surrounding electrolyte. These ions form 
a diffuse cloud around the particle. The combination of surface charge and an equal 
and opposite diffuse layer charge is called the electrical double layer (Hunter 1987). 

The thickness of the double layer can be reduced by adding salt to the suspension. 
In our calculations it will be assumed that the double-layer thickness is much less than 
the particle radius, an assumption which is often satisfied in practice. For example, in 
I O p 3 ~  KC1, the double-layer thickness is only 10 nm, so the thin double-layer 
constraint is satisfied by particles of a micrometre or more. 

When an electric field is applied to a colloid a tangential flow is generated by the 
electrical forces on the diffuse part of the double layer. For the thin double-layer 
systems of interest here, the diffuse layer can be treated as an infinitesimally thin sheet, 
and this flow can be represented as a tangential velocity jump of 

at the particle surface (O’Brien 1988), where c and 7 are the permittivity and viscosity 
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of the solvent respectively, and 5 is the equilibrium voltage drop between the particle 
surface and the bulk electrolyte. - V ,  $ is the component of the local electric field 
tangential to the particle surface. 

The particle Reynolds number Ua/v  for this motion is typically very small. For 
example a 1 pm diameter particle with a zeta potential of 50 mV has a Reynolds 
number of 2 x in a field of 1000 V/m, where we have used the estimate e{E/y for 
the particle velocity. Thus we can neglect the inertia term pu. V u  in the Navier-Stokes 
equations, which then reduce to 

iwpu = -Vp+yV2u,  (3.2) 

and v . u  = 0, (3.3) 
where p and u are the fluid velocity and pressure. For convenience we have dropped 
the subscript 1 on the liquid density, which will henceforth be denoted simply by p. The 
incompressibility constraint (3.3) is invoked on the assumption that the particle radius 
is much smaller than the sound wavelength. 

In most suspension calculations the linear inertia term iopu is also neglected. The 
ratio of the linear inertia term to the viscous stress is characterized by the dimensionless 
quantity wa2/lv. In this application, where the applied field may have a frequency of 
several MHz, wa2/v  can be O(1) or greater; in the case of a 1 pm diameter particle at 
1 MHz, wa2/lv = 1.6. 

The amplitude of the particle oscillations at these high frequencies is very small. For 
a 50 mV particle in a 1 MHz field of 1000 V/m, the amplitude is only 5 x m. It 
is remarkable that such tiny motions can give rise to measurable macroscopic sound 
waves. 

The expression (3.1) for the velocity jump involves the electrical potential @, and so 
this quantity must be evaluated before the velocity problem can be addressed. In our 
calculation of the potential, we will assume that the particle charge is small enough so 
that the condition 

is satisfied, where a is the particle radius, K - ~  is the double-layer thickness and z is the 
counterion valency. When this condition is satisfied the distortion of the diffuse layer 
does not have a significant effect on the field (O’Brien 1986), and hence the applied field 
distribution is the same as that for a suspension of uncharged particles. 

Since the quantity K a  is large for the thin double-layer systems of interest here, the 
condition (3.4) is satisfied for a realistic range of { potentials. 

It will also be assumed that the particle permittivity is much less than that of the 
solvent, as is usually the case for aqueous suspensions. When this condition, and the 
constraint (3.4) are satisfied, the normal derivative of @ at the particle surface is zero. 

Thus the calculation of the particle motion involves the solution of Laplace’s 
equation for 4, and equations (3.2)-(3.3) for u and p ,  subject to the boundary 
conditions that there is a velocity jump (3.1) on the particle surfaces, that the normal 
component of the electric field at the particle surface is zero, and that the volume 
average field is ( E )  while the momentum per unit mass ii is zero. 

The electric force exerted by the applied field on each particle is balanced by an equal 
and opposite force on the diffuse layer. Thus the force and torque-balance equations 
for the particle and its double-layer take the form 

iwMU = F, (3.5) 
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and ioI,SZ = T, (3.6) 
where U and 51 are the translational and angular velocity of the body, and F and Tare 
the hydrodynamic force and torque on the particle and diffuse layer. Since the double- 
layer is thin we can represent F and T as integrals over the particle surface and take 
M and IM to be the mass and moment of inertia of the particle respectively. 

In the zero frequency limit the unsteady Stokes equations (3.2) and (3.3) are satisfied 
by the fluid velocity field 

(3.7) 

with a uniform particle velocity U. The term (e[/q) V$ represents a steady potential 
flow and hence it does not contribute to the hydrodynamic force or torque on the 
particle. Thus the solution (3.7) also satisfies the conditions (3.5) and (3.6) that the 
particles are force and torque-free at zero frequencies. The particle velocity U in this 
limit is determined from the zero momentum flux requirement. From (1.3) it follows 
that 

-u= 9 AP - ( u )  
P 

for zero momentum flux. On evaluating the quantity (u )  using the form (3.7) for local 
velocity u we find that 

€5 K * / K  limpu, = - 
w+o 7 1+4APlP’ 

where K* is the electrical conductivity of the suspension and K is the conductivity of 
the background electrolyte. In deriving this result we have replaced V$ in the 
electrolyte by - i /K ,  where i is the local electric current density, and we have used the 
fact that i is zero inside the particles. 

4. The integral expression for the velocity and electric field 

(Williams 1966) 
The Green’s function G for the unsteady Stokes equations (3.2) and (3.3) has the form 

(4.1) 

where 

. w  
V 

k 2 = i - - ,  R = k r  (4.3) 

and v is the kinematic viscosity. 
G@) is the ith component of the fluid velocity at x due to a unit point force in the 

xi direction acting at the origin in an infinite liquid. 
As r --f 0 with k held fixed, G diverges like l / r .  This is a consequence of the fact that 

the viscous terms in the unsteady Stokes equations dominate the inertia terms at small 
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r ;  the equations in this case reduce to the steady Stokes equations, which have a Green 
function proportional to 1/r. At large r the inertia terms dominate in the equations of 
motion, the flow is irrotational and G decays like l/r3. 

The Green’s function representation for the solution u of the unsteady Stokes 
equations take the form 

u(x,) = CU,(X,,)+ (G*a-u*T)*dS, (4.4) 
P s, 

where r is a closed surface and dS points out of r. T is a third-order tensor, with qjk 
representing the ik component of the stress tensor associated with the flow field G,. u, 
is the contribution to the velocity at x, from the pth particle within r, given by 

where d S  points into the particle. The expression (4.4) is an extension of the result 
given by Ladyzhenskaya (1969) for Stokes flow to the oscillating case. 

In the macroscopic boundary integral method (O’Brien 1979), the surface r is taken 
to be a ‘macroscopic’ surface, that is, one for which the radii of curvature are much 
greater than the average particle separation. r could, for example, be a sphere with a 
radius much greater than the average particle separation. Such a surface will pass 
through both fluid and particles. In writing (4.4) in this case we formally include the 
contribution to the integral over r from the portion lying inside the particles, so that 
the integral extends over all of r. The contribution from these portions of r i s  cancelled 
in (4.4) by the contribution to the up from the surfaces of intersection of the cut 
particles. 

The terms G and T in the integral over r vary much more slowly with position than 
cr and u, since the radii of curvature of r are much greater than the lengthscales for the 
microscopic fluctuations. Thus the fluctuations in cr and u cancel out on integration, 
and these terms can be approximated in the integral by their macroscopie averages (a) 
and (u ) .  Hence the integral over I‘ in (4.4) becomes 

Jr (G . ( cr) - ( u )  + T )  * dS. 

The velocity u is assumed to be a stationary random function of position within r, and 
thus the deviatoric part of the stress tensor eD is also a stationary function, with a 
constant mean. It follows that the product of G and (crD) in (4.6) is O(l/r3), since G 
itself is O(l/r3) at large r. Thus as the radius of r becomes infinite the contribution to 
the surface integral from this term vanishes. We may therefore replace ( 0 )  in (4.6) by 
- ( p )  1 in this limit. On applying Gauss’s divergence theorem to the integral (4.6) we 
then obtain s, G*(-V(P) -iwp<u))dV+ (u(x,>>. (4.7) 

Here V is the volume lying inside r and outside a vanishingly small sphere centred on 
x,. The term (u(x,)) arises from the surface integral over the small sphere. In deriving 
this result we have used the fact that 
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and iwpG = V -  T, 

since the flow field G and the corresponding stress tensor T satisfy the unsteady Stokes 
equations. 

In the dynamic mobility calculation the macroscopic momentum term ii is set to 
zero. Since the rate of change of this momentum is equal to the macroscopic pressure 
gradient in the suspension (see (3.5) in O'Brien 1990) we can set V ( p )  to zero in the 
above integral. 

As discussed in 6 1, the volume averaged velocity ( u )  is related to ii by the formula 
(O'Brien 1988, p. 80) 

On setting ii to zero we find that 

(P> ii = P(U> + # A d  u>. (4.8) 

f$ AP ( u )  = --(U). 
P 

(4.9) 

Substituting this formula for ( u )  in the expression (4.7) for the macroscopic boundary 
integral and combining with (4.4) we find that the velocity at a point in the suspension 
is given by 

(4.10) 

From the formula (4.5) it follows that the contribution up from a distant particle is 

- iw ApvG. U +  O(1 /r4), 

where v is the particle volume. The leading term in this formula is cancelled in (4.10) 
by the volume integral that arose from the macroscopic boundary term, and thus the 
formula converges as T becomes infinite. 

By similar arguments it can be shown that the electric field at x, can be written in 
the analogous form (O'Brien 1979, equation (3.11)) 

where n is the particle number density, 

is the electric dipole strength of the particle and 

(4.12) 

(4.13) 

is the contribution to the field at x, from the pth particle in r. In these formulae the 
unit normal n points out of the particle. 

In the derivation of these results it has been assumed that the unsteady Stokes 
equations (3.2) and (3.3) apply everywhere in the fluid within r. In fact the 
incompressibility condition (3.3) is only approximately satisfied, and our results are 
valid only if r is much smaller than the wavelength of sound. The limit of infinite r 
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that we have taken is therefore not strictly valid. This limit should be interpreted as the 
limit as the dimensions of r grow much larger than the average particle separation 
while remaining much smaller than the sound wavelength. 

5. A formula for the particle velocity in a suspension 
For the next step in the macroscopic boundary integral method we require a F a x h  

formula for the velocity of a sphere placed in an infinite liquid with an ambient electric 
field E&) and flow field u,(x). This formula will be used for calculating the velocity 
of a test particle in a suspension, with the ‘ambient’ fields u, and E, given by the 
expressions (4.10) and (4.1 1)’ with the sums extending over all particles except the test 
particle. 

The calculation of the particle velocity in these ambient fields involves the solution 
of Laplace’s equation, and the unsteady Stokes equations (3.2) and (3.3) subject to the 
boundary conditions that u and Eapproach the ambient fields far from the particle and 

(5.1) 

at the particle surface. The translational velocity u and angular velocity 51 are 
determined from the force and torque balance equations (3.5) and (3.6). 

Pozrikidis (1989) has shown that the hydrodynamic force on a fixed sphere placed 
in an ambient flow field u, is given by the Fax& formula 

where xo is the centre of the sphere, 

and 

a = 27c7a(3+3h+h2); B = -2nya ( l+-+--3- ; ;2 $)* (5.3) 

(5.4) 

The derivation of this formula assumes no-slip boundary conditions. In order to make 
use of this result we must convert our problem to one in which the sphere is held fixed 
and there is no slip at the surface. This is accomplished by setting 

(5.5) €5 u = -V@+u’’+u”, 
7 

4 p = - iwp- @ +p’ +p”, 
7 

where (u”,p”) is the solution to the unsteady Stokes equations for a particle translating 
with velocity U and rotating with angular velocity SZ in an infinite liquid at rest. Thus 
u” satisfies the U+51 x x part of the boundary condition (5.1). 

The hydrodynamic force on the particles due to the flow field (5.5) can be written as 

F =  F , + F + F ,  
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where F$ is the force due to the part of the flow field proportional to V$, and F and 
F” are the hydrodynamic forces due to the u‘ and u” flow fields respectively. 
F” is given by (Lawrence & Weinbaum 1986) 

F = RU, 

where the resistance coefficient R is given by 

R = -6nya(l +h+ih2) .  (5 * 7) 
The flow field (&‘T,I) V$ gives rise to the pressure field -iwp(etJv) $, and this exerts a 
hydrodynamic force 

on the particle. The viscous stresses do not contribute to this force because the flow 
field is irrotational. 

By using the expression (4.12) for the electrical dipole strength S, and the fact that 
V$.n is zero at the particle surface, we can write the above formula for the force as 

c F@ = iwp - S.  
T,I 

(5.8) 

The dipole strength S can be calculated using the Faxen formula for a sphere in an 
ambient electric field, namely (O’Brien 1979, equation (3.14)) 

s = - 2xa3€~,(x,). 

Thus we have formulae for F@ and F”. To complete the calculation of the force on the 
sphere we require F ,  and it is here that the Pozrikidis-Faxen formula is used. 

By using the fact that $ satisfies Laplace’s equation we find that the ( u ’ , ~ ’ )  field 
satisfies the unsteady Stokes equation (3.2) and (3.3) with the boundary conditions that 
u’ is zero at the particle surface, while far from the particle, 

The Pozrikidis formula (5.2) for the force on a fixed sphere can be applied to this u‘ 
problem, giving the result 

(5.9) 
4 F = (.+pv2)~u,(x,)+ol--,(x,), 
7 

where we have used the fact that E, satisfies Laplace’s equation. 
The total force on the particle is obtained by summing the contributions (5.7), (5.8) 

and (5.9). Setting this sum equal to the mass times acceleration of the particle iwMU 
and solving for the particle velocity U we obtain the required FaxCn relation, namely 

where ,uo is the dynamic mobility of an isolated sphere, given by 

(5.10) 

(5.11) 
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Although we have derived the FaxCn law (5.10) for a sphere in an infinite liquid, the 
formula can also be applied to a sphere in a suspension. In the suspension problem we 
take the ambient fields u, and E, to be given by the formulae (4.10) and (4.1 l), where 
the sum now extends over all particles except the test sphere. Note that the stress and 
velocity in the integrals in these formulae are the stress and velocity when the test 
sphere is present; so these fields are not really the true ambient fields. However, for the 
derivation of the result all that is required is that the fields u, and E, satisfy the 
unsteady Stokes equations and Laplace’s equation in the volume occupied by the test 
sphere, and this is the case here. The ‘disturbance’ velocity and electric fields in this 
case are given by the integrals (4.5) and (4.13) over the surface of the test sphere. 

The substitutions (5.5) and (5.6) can be applied as before, and the formulae for the 
forces F‘ and F$ also hold for the suspension problem. The Pozrikidis result (5.2), 
which is used to calculate the force F‘, is valid provided the disturbance velocity 

u’ - u, - (474 E a  

satisfies the unsteady Stokes equations outside the test sphere and approaches zero far 
from the sphere; this is so because the disturbance velocity (4.5) and electric field (4.13) 
satisfy this criterion. Thus, the derivation of the FaxCn relation carries over to the 
suspension problem. 

In applying the Faxen law to the suspension, however, it is convenient to evaluate 
the term V2u, using the formula 

% ( X o ) =  c up@,)+ ( - (P>G+(u)*T)*dS (5.12) 

instead of (4.10). Here the macroscopic boundary integral has been kept as a surface 
integral, rather than converting to volume integral form. When we take V2 of this 
expression, the contribution from the macroscopic boundary can be ignored, for the 
integrand is then O ( F ~ )  and so the boundary integral vanishes as r tends to infinity. 
Combining the resulting formulae for u,, E, and V2u, with the Faxtn formula (5.10) 
we obtain 

P * i  s, 

where (5.14) 

This is the required result, expressing the velocity of the jth sphere in the suspension 
in terms of the contributions from the other particles and terms from the macroscopic 
boundary integral. This completes the second step of the macroscopic integral method. 

6.  The average particle velocity t o  O(q5) 
The average quantities that we have been dealing with so far are averages over a 

representative sample of a single suspension. Such averages can also be determined by 
sampling over an ensemble of macroscopically identical suspensions (Batchelor 1970). 
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On taking the ensemble average of (5.13) over all realizations in which there is a 
particle centred on x,, we obtain 

*VV- dV, (6.1) r 'I ioa$ Ap( U) G ,uo n( S )  
R - ioM 4 K E  

where A U(x,  I x ,  + r) is the average of the contribution to the velocity at x, from a 
sphere at x ,+r  averaged over all realizations in which there is a sphere at x, and one 
at x, + r. p(x,  + r I x,) is the probability density for a sphere at x, + Y given that there 
is a sphere at x,. The integral in (6.1) extends over all space outside a vanishingly small 
sphere centred on x,. There are no problems with convergence for the macroscopic 
boundary integrals cancel out the r-3 contribution from AU at large r.  

The quantities p and n in the integrand in (6.1) are O($) and thus the integral itself 
is O($). To get the O($) correction to ( U) we can therefore use an O(1) approximation 
for AU, that is, we can evaluate AU as if the spheres at x, and x, + r  were alone in an 
infinite electrolyte with an ambient uniform field ( E ) .  To the same accuracy we can 
also replace (U) on the right-hand side of (6.1) by p o ( E ) ,  the value for an isolated 
sphere, and we can approximate (S) by the isolated sphere value -2na3s(E). 

By using the integral formulation (4.4) for the problem of two spheres in an ambient 
field ( E )  and following the same procedure as was used for deriving (5.13), we find 
that the velocity of one member of the pair is given by 

u, = AU,+p,,(E),  (6.2) 
where the subscripts 1 and 2 denote the two spheres. The term p o ( E )  comes from the 
integral over r, on the assumption that the radius of this surface is so large that it lies 
in the region where the field takes the uniform value ( E ) .  On rearranging the 
expression (6.2) we find that the term AU in (6.1) can be calculated using the formula 

where we have replaced A U, by A U(x,  I x ,  + r )  and U, by U(x, I x,, + r), where the latter 
symbol indicates the velocity of a sphere at xo when the other sphere is at x, + r .  

To determine the O($) correction to ( U )  using (6.1) and (6.3) we must calculate the 
velocity of a pair of spheres for all separations at the given frequency and evaluate the 
integral of the velocity over those separations. 

From the linearity and symmetry of the two-sphere problem it follows that the 
velocity of the sphere-pair is given by an expression of the form 

where e is the unit vector parallel to r and p,, and pI are the dynamic mobilities of a 
sphere-pair aligned with and perpendicular to the applied field respectively. 

To evaluate the O($) coefficient we also require a form for the pair distribution 
function p .  In this paper we will assume that the suspension is random, that is p = n 
for r > 2a and zero for r < 2a. On substituting this form for p in (6.1) and integrating 
over all orientations we find that to O($), the dynamic mobility of the suspension is 
given by 

AU(x,Ix,+r) = U(.%Ix,+r)-po<E), (6.3) 

U =  0.,,ee+p$-eel)*(E), (6.4) 

po = po(l -#[;+H+$H(I -(2h+ l)e-")]) 

+ ~ ~ ~ d ~ ( ~ l l + 2 p , - 3 ~ , ] . ' - ~ ~ ~ z ~ e ~ ~ r ) ,  (6.5) 

21 FLM 2 5 7  
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where 

The term multiplied by ill comes from the integral of the ( U) - G term in (6.1) from 
r = 0 to r = 2a. The dipole term does not contribute to this formula, for the integral 
of VVl/r over a sphere is zero. 

The next step in the calculation is the determination of the dynamic mobilities of an 
isolated pair of spheres. 

7. The relationship between the dynamic mobility and the hydrodynamic 
resistance 

In their paper on the dynamic mobility of a spheroidal particle, Loewenberg & 
O’Brien (1992) obtained a formula linking the dynamic mobility of an isolated particle 
to the hydrodynamic resistance coefficient of an uncharged, but otherwise identical 
particle, where the resistance coefficient is the hydrodynamic force on the particle 
translating with unit velocity. In this section we will derive similar relations between the 
dynamic mobility and resistance coefficients for a pair of spheres. Unlike ,uD, the 
resistance coefficients do not depend on the particle density, since they are determined 
by the flow field for a prescribed particle velocity. Thus by working in terms of the 
resistance coefficient instead of the dynamic mobility we reduce the number of 
variables to two, namely (waz/v)  and d/a,  where d is the distance between the particle 
centres . 

We begin by substituting the expressions 

(7.1) 4 u=tr+-(V$+(E)), 
‘I 

ec p = p’ - iwp - ($ + (E) - x), 
’I 

(7.3) €5 U =  U’+-(E), 
’I 

in the governing equations and boundary conditions. The variables tr and p‘ satisfy the 
oscillatory Stokes’ equations (3.2) and (3.3) subject to the same boundary conditions 
as that for uncharged spheres moving with velocity U’ in an infinite liquid at rest far 
from the spheres. On substituting (7.2) and (7.3) in the force-balance formula (3.5) we 
get 

d e n  dA -iws[M(E) - p  lA, ($ + (E) ex) n dA], (7.4) 
‘I 

where d is the stress tensor with pressure p‘ replacing the true pressure p .  

under the action of an external force 
Equation (7.4) has the same form as the force balance equation for a particle moving 

The quantity ($ + ( E )  . x) satisfies the same equations and boundary conditions as the 
velocity potential for two spheres moving with velocity ( E ) ,  and the integral involving 
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this potential in (7.5) is the hydrodynamic force due to this potential flow. From 
potential flow theory it is known that the hydrodynamic force on oscillating particles 
(Batchelor 1967, $6.4, p. 407) is the same as if the particles had an extra mass M a  which 
depends on the radius and separation of the sphere pair. Thus the formula (7.5) for the 
effective force on either of the spheres can be written as 

Kxt  = -io(M'+M)-(E). 4 
'I 

Since the pressure does not contribute to the torque on a spherical particle, the torque- 
balance equation (3.6) is not altered by the substitution of the formula (7.2) for the 
pressure. Thus, there is an external force but no external torque in the transformed 
problem. 

By using the substitution (7.1H7.3) we have removed the slip boundary condition 
from the problem and converted it to one of calculating the motion of a pair of 
uncharged, torque-free spheres owing to the external force (7.6) acting on each sphere. 

In general M a  is a tensor, but if the field is aligned either parallel or perpendicular 
to the line of centres then the added mass force is parallel to the field and M u  reduces 
to a scalar in the above expression. We let M r  and M y  be the added mass for the 
parallel and perpendicular motions, respectively. 

From the fore and aft symmetry of this problem it follows that the application of an 
equal force to each sphere will cause them to translate with equal velocities and rotate 
with equal and opposite angular velocities. By using the rotational symmetry and 
linearity condition we find that the hydrodynamic force on either sphere owing to this 
motion has the form 

TaF; Us ee + qaFy( U -  U -  ee) + qaaF"(51 x e), (7.7) 
where FF and FY are the non-dimensional force per unit velocity parallel and 
perpendicular to the centreline, and F" gives the force per unit angular velocity. 

Similarly the torque on the sphere moving with angular velocity 51 is given by 

ya3T"0 + T a 2 P (  U x e) (7.8) 
where T" is the torque per unit angular velocity and TU gives the torque per unit 
translational velocity. By using the reciprocal relation (Goldman, Cox & Brenner 1966) 
for oscillatory Stokes flow it can be shown that 

T U  = F". (7.9) 
The F and T quantities in the above expressions are the resistance coefficients referred 
to earlier. If these coefficients are known then the particle velocity U' and 51 can be 
obtained by substituting (7.7) and (7.8) in the force and torque balance equations (3.5) 
and (3.6), with the addition of the external force F,,, given by (7.6). In the case of 
motion along the centreline this yields 

(7.10) 

where we have used the formula (7.3) to replace U' by the true velocity U. For the 
perpendicular component of the motion we obtain 

(7.11) 

21-2 
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iwI,Q = ya3TSaQ+qa2TU U --El , 
(1: 1 (7.12) 

from the torque balance. 

spheres is given by 
Solving equation (7.10) for U,, we find that the dynamic mobility for the aligned 

(7.13) 

In the case of transverse motion the calculation is more complicated, since the formulae 
(7.11) and (7.12) contain the two unknowns U, and 52. The solution of these equations 
gives 

and 

(7.14) 

(7.15) 

where ,uR is the rotational dynamic mobility, that is the angular velocity per unit 
applied field. 

Readers who are not familiar with the electrokinetics literature may be interested in 
the fact that in the low-frequency limit the velocity field reduces to a potential flow, 
even though the Reynolds number is zero (Morrison 1970). This can be seen from the 
fact that the force (7.6) that drives the flow field u is zero in this limit and thus only the 
potential flow component remains in the formula (7.1) for u. The reason for this 
surprising result is that the double layer acts as a sink for the vorticity generated by the 
particle motion, and hence the vorticity is confined to the double layer instead of 
diffusing out to the surrounding liquid. Thus flow is irrotational beyond the double 
layer. As the frequency is increased the particle velocity drops owing to inertia, the 
cancellation of vorticities is incomplete, and the flow field is no longer irrotational. 

To determine the dynamic mobilities of a pair of spheres using these formulae we 
must calculate the added masses and the resistance coefficients for pairs parallel and 
perpendicular to the applied field. In the following sections we will outline the 
numerical procedure for determining these quantities and present sample calculations. 

8. Calculation of the dynamic mobility of a sphere pair 
The calculation of the resistance coefficients and the added masses involves the 

solution of the unsteady Stokes equations and Laplace's equation for a sphere pair 
moving with a prescribed velocity. Of the various problems to be considered only the 
case of the potential flow field due to axisymmetric motion of two spheres can be solved 
exactly. This is done using the stream function expressed in bipolar coordinates (see the 
Appendix). For the other problems, general solutions can be written down, but the 
coefficients in the series must be determined numerically. It is, however, possible to 
obtain simple forms for the asymptotic behaviour of the dynamic mobility and 
resistance coefficients at low and high frequencies. 
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At low frequencies it can be shown (Pozrikidis 1989) that the resistance coefficient 
for translation motion is given by the asymptotic formula 

where Do is the Stokes drag coefficient. This formula applies to both the transverse and 
parallel motions, with the appropriate Stokes drag substituted for Do. 

At high frequencies the corresponding asymptotic form is (Pozrikidis 1989) 

ma = Ma/pa3, where M a  is the added mass of either sphere, defined by 

-iwMaUo = iwp $ddA. 

In this expression q5 is the velocity potential, A is the surface of either sphere, and the 
integral on the right-hand side extends over the surface of either sphere. 

The coefficient B in (8.2) is called the Basset force coefficient. It can be calculated 
using the formula (Batchelor 1967, 9 5.13) 

s, 

where Us is the tangential velocity of the fluid at the surface of either of the particles, 
obtained from the potential flow solution for two particles moving with equal velocities 

By using the asymptotic form (8.1) with the formulae (7.13) and (7.14) for the 
UO. 

dynamic mobilities we find that pII and puI are both given by 

for small A. This is in agreement with Smoluchowski's formula for the static mobility, 
which is known to apply to any group of particles with thin double layers and uniform 
g potential (this may be deduced from the results in Morrison 1970). Thus each sphere 
moves as if it were alone in the zero frequency limit. The interactions cancel in this limit 
because the forces on each sphere owing to the electric field vary in exactly the same 
way with spacing as the resistance coefficients. 

For the high-frequency limit, we substitute (8.2) in (7.13) and (7.14) to find that pl, 
and pI both have the asymptotic form 

at large A. Thus the mobilities approach zero at high frequencies like d, at a rate that 
depends on the particle density, the Basset force and the added mass. 

The resistance coefficients used in Q 7 to derive expressions for the dynamic mobility 
of sphere pairs were calculated using the multipole collocation technique (Gluckman, 
Pfeffer & Weinbaum 1971 ; Kim & Russel 1985). The added mass and the Basset force 
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FIGURE 1 .  The dynamic mobility of an isolated particle as a function of frequency, for pp/p = 2. 

were calculated using bipolar coordinates. The added mass has been calculated by 
Jeffrey (1976) and will not be discussed here. The details of the resistance and Basset 
force calculations are outlined in the Appendix. 

All results presented in this section are for the case of the particle to fluid density 
ratio, p p / p ,  equal to 2. The mobilities will be normalized by dividing by the mobility 
for an isolated sphere, which is plotted as a function of frequency in figure 1. 

The results for the normalized dynamic mobility of either sphere of an identical pair 
in axisymmetric motion are shown in figure 2. At low frequencies there is no interaction 
and for all separations the normalized mobility is equal to 1 in accord with the 
Smoluchowski formula, as discussed in $7. As the frequency increases the terms ioM" 
and iwM in (7.13) become significant, and the mobility begins to decrease. The change 
with frequency is monotonic, rising to a limiting value of around 11 YO in the high- 
frequency limit. 

From figure 2(b) it can be seen that the phase of p,, is quite insensitive to particle 
interactions. The change in the phase lag between the particle motion and applied field 
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increases with decreasing separation, reaching a maximum of 2.3" for the closest 
spheres at (A1 - 1. At these frequencies an isolated particle lags the applied field by 
about 17" (figure 1 b). 

From the asymptotic forms (8.4) and (8.5) for pll and pI it follows that the high- 
frequency limit of the normalized mobility is 
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where the ma and B refer to the values appropriate to the transverse or axisymmetric 
motion. For D = 2.01, B/B,  = 0.8334 and ma/& = 0.7077, yielding a value of 0.885 
for this ratio for the case of axisymmetric motion. This is in good agreement with the 
value in figure 2(a). 

The electrostatic and hydrodynamic interactions between the spheres both decay as 
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rP3 at high frequencies, and for this reason the interactions shown in figure 2 are fairly 
short-ranged. 

Results for the transverse mobility ,uuI are shown in figure 3.  Although the curves are 
very different from those of p,,, the magnitude and phase vary by similar amounts. In 
this case the mobility magnitudes increase to a maximum with frequency and then level 
off. From figure 3(b) it can be seen that the interactions at low frequencies increase the 
phase lag between the particle motion and the applied field, but at higher frequencies 
the interactions reduce the phase lag. Both the phase and magnitude of pl agree with 
the asymptotic form (8.5) at high frequencies. 

Although we do not need to know the rotational mobility pB for our O@) 
calculation, it is interesting to see how this quantity does vary with frequency and 
particle separation. In figure 4 we show ap, normalized by the mobility of an isolated 
sphere as a function of frequency at various centre to centre separations. This ratio is 
equal to the speed at a point on the surface of the particle owing to rotation, divided 
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FIGURE 4. The rotational dynamic mobility of either sphere of an identical pair in transverse 

motion, as a function of frequency, at various centre to centre separations. 

by the speed on a translating isolated particle. From figure 4(u), it can be seen that the 
rotational speed is only 15 YO of the translational speed at most, and that the greatest 
rotation occurs for the closest spheres, near h = 1. 

We plan to apply the two-sphere solution to study multiparticle interactions using 
Stokesian dynamics simulation (Brady & Bossis 1988). Such calculations would be 
greatly simplified if we could neglect the particle rotations. To get some idea of the 
errors incurred by such a step we have calculated ,uI with SZ set to zero. As would be 
expected, the error is worse in the case of close spheres, where the rotations are 
greatest, but even here the error in the magnitude of pL is only 1 YO, while the maximum 
phase error is 1". Thus the rotation can safely be neglected in the calculation of the 
translational particle motion. 
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9. Calculation of the O(q5) coefficient 
The integral in (6.5) was evaluated using a trapezoidal rule with an unevenly spaced 

grid, with the points packed close together near r = 2 where the mobility is most 
rapidly varying. For large separations r ,  where 

- 3  < 1.7 x 10-4, I 
the contribution to the integral was calculated using the far-field form 

where 

and ps = C[/;/T is the Smoluchowski mobility. This far-field form is obtained by 
applying the Faxin relation (5.10) to one of the spheres, with the ambient electric and 
velocity fields given by the flow field due to the other sphere as if it were isolated. 

In figure 5 we show the calculated values of the O(4) coefficientflh) for pp/p = 2 and 
p p / p  = 4, where 

PdPO - 1 
4 f = lim 

4+0 

These curves were obtained by passing a spline through the computed values, which are 
marked on the figure. It is apparent that the particle concentration effect increases with 
particle density. 

This effect of particle concentration is most pronounced at low frequencies. From 
the formula (3.8) it follows that 

where we have used the fact that the O(4) coefficient for the conductivity is - %  for a 
suspension of non-conducting spheres (Maxwell 1873). It is not obvious from the form 
of the integral expression (6.5) that the computedfvalue should tend to this limit. The 
fact that it does provides another check on the validity of the computations. 

It does not seem to be possible to derive a simple analytic form for the high- 
frequency limit off. For pp/p  = 4 the computed values off tend to -0.52, while for 
p p / p  = 2, the limiting value is -0.43. Clearly the O($) correction is smaller at high 
frequencies than at low frequencies and the effect of particle density is less pronounced. 

For both pp/p  = 2 and 4, the contribution to Ah) from the term 

is between 51 YO and 67 YO for the frequencies shown in figure 5 .  Thus the particle 
interactions play an important role, at all frequencies. It is surprising that this 
contribution is so large at low frequencies, for there is no interaction between a pair 
of particles at zero frequency. From the asymptotic form (9.1) it can be seen that 
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FIGURE 5. The magnitude and phase angle (in degrees) of the O(q5) coefficient f as a function of 
the non-dimensional frequency parameter A, for (a) pp/p = 2 and (b) pp/p = 4. 

although the difference po-,u, in the numerator approaches zero as h+O, the 
lengthscale of the interactions increases, and this offsets the decrease in magnitude 
when we integrate over all separations. 

To illustrate the effect of particle concentration on the dynamic mobility we have 
used theseflh) values to calculate ,uD/po for a suspension with a volume fraction of 5 YO. 
This quantity is plotted in figure 6. The symbol pD(h; 9) in this figure is the dynamic 
mobility of a suspension of volume fraction 9, at dimensionless frequency A, divided 
by the mobility of an isolated sphere. As would be expected from the plots off(h) in 
figure 5,  the changes in the average mobility are greater in a suspension with particles 
of relative density 4, than when the relative density is 2. 

The particle interactions have the effect of decreasing the magnitude and the phase 
lag of the mobility. Thus the mobility spectrum changes in a way that would indicate 
smaller particles and smaller [ potential if the dilute theory was used to interpret the 
spectra. 
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FIGURE 6. The dynamic mobility pD for a suspension with a 5 'YO volume fraction normalized by 
the mobility of an isolated sphere, for (a) p,/p = 2 and (b) p,/p = 4. 

In practice most colloidal particles have densities in the range 

2 < & < 4 .  
P 

The O(#) correction to the dynamic mobility for such suspensions can be obtained by 
interpolating between the f values in figure 5.  

As a check on our formula (6.5) for the dynamic mobility to O(#) we have also 
evaluated the O(q5) correction using Batchelor's renormalization method (1974). 
Although this method yields an apparently different formula, the maximum 
discrepancy between the two results was only 3 % ,  and this is probably due to the 
numerical integration procedure. 

In this calculation we have assumed a uniform pair distribution. In practice, there 
are a number of effects which may limit the validity of this assumption. The 
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dipole-dipole interactions between the particles owing to the applied field will create 
a steady attractive force between the particles and this will lead to a non-uniform pair 
distribution if the field is applied for too long. The particle dipole strength is of 
O(sa3(E)), and so the force between a pair of spheres separated by a distance of order 
the particle radius is O ( S U ~ ( E ) ~ ) .  This force will cause the particles to move with a 
steady velocity of O ( E U ( E ) ~ / ~ ) .  For 1 pm particles in a field of 1000 V/m this velocity 
is 1 pm/s. Thus the electric field should be applied for much less than a second if this 
effect is to be unimportant. 

Most suspensions need to be stirred in order to prevent particle settling, and this 
stirring might also alter the pair distribution. The calculation of this effect is likely to 
be very complicated for the stirring motion is usually turbulent. The size of the effect 
can, however, be estimated in practice by measuring the dynamic mobility at a number 
of stirrer speeds. 

Although there have been a number of studies of the ESA effect in non-dilute 
suspensions in the literature (see for example James, Texter & Scales 1991) none of 
these are suitable for comparison with our theory. This is because the ESA signal 
depends on the acoustic properties of the suspension as well as the dynamic mobility. 
These acoustic properties vary with particle concentration, and there is no formula 
available for predicting this variation. Thus it is not possible at present to extract the 
O($) correction to ,uD from the measured ESA signal. We are, however, in the process 
of developing a device which will enable the direct determination of ,uD in suspensions 
of arbitrary concentration. When the prototype version is available we plan to test our 
predictions for the O($) correction to po. 

The work presented here was made possible by the support of the Australian 
Government, through a Senior Research Fellowship for R. W.O.B. and an Australian 
Postgraduate Research Award for P.F.R. We also wish to thank the CSIRO for the 
provision of a postgraduate studentship for P. F. R. during this period, and for the use 
of their computing facilities. 

Appendix. Calculation of the resistance coefficients and the Basset force 
for a pair of spheres 

A. 1. The collocation procedure 
To solve the axisymmetric problem (hereinafter referred to as problem 1) we used the 
stream function in the form given by Lawrence & Weinbaum (1986). Problems 
involving translation perpendicular to the line of centres, and rotation about an axis 
perpendicular to the line of centres (to be referred to as problems 2 and 3, respectively) 
were solved using the approach of Kim & Russel (1985). Both problems were solved 
using the collocation procedure. We will discuss the procedure here for the case of 
problem 2. 

Following Kim & Russel we write the collocation velocity field as 

$, 0, and r, are spherical polar coordinates with the origin at the centre of sphere i. The 
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6 = 0 line passes through the sphere centres, k,(z) is the nth order modified Bessel 
function of the third kind (Abramowitz & Stegun 1992); zc = hr,, and P;@) is the 
associated Legendre function of the first kind, with pi = cos Oi. 

From the symmetry of the problem we can derive simple relations between the i = 1 
and i = 2 coefficients (see Kim & Russel 1985). 

It is assumed that the flow can be well represented by truncating the series after 3M 
terms, where it4 will depend on both the centre to centre separation and the frequency 
parameter A. No-slip boundary conditions for the components of the velocity field are 
enforced at it4 collocation points on the surface of one of the spheres. This gives us 3M 
equations which determine the coefficients of the truncated series. These coefficients are 
then used to calculate the hydrodynamic torques and forces on either sphere with the 
aid of the following formulae. 

The hydrodynamic force on particle 1 is related to the coefficients in the expansion 
(A 1) by the formula 

This is valid for problems 2 and 3. A similar expression can be derived for the resistance 
coefficient F,P in problem 1. 

The torque on sphere 1 is determined by the cll coefficient in (A 1) and is given by 

F = $ T ( ~ u , ,  +A2). (A 2) 

h2 sinh A - 2h cosh h + 2 sinh h 
h cosh h - sinh A F , ( 4  = 

Again this is valid for problems 2 and 3 .  The derivation of this expression is more 
complicated than in the Stokes flow case because the stress tensor is no longer 
divergence free. In the derivation we used the Lorentz reciprocal theorem to rewrite the 
expression for the torque as an integral involving the stress over the interior surface of 
a hollow sphere executing rotary oscillations about a diameter. 

As our collocation points we used the roots of the Chebyshev polynomials. For 
problem 1 we removed the two points nearest the equator, and replaced them with 
points 1.5" either side of the equator. For problem 2 we made no change to the 
Chebyshev points. The use of these points gave better program performance than 
various linear distributions (cf. Kim & Russel 1985). 

Gluckman et al. (1971) looked at the convergence of the ratio of the hydrodynamic 
force on either sphere of the pair to that of an isolated sphere to determine when 
sufficient terms had been retained in the truncated stream function. In our case the 
hydrodynamic force is a complex quantity, and we use the magnitude of the ratio 

F 
- 6 x 7 4  1 + A + $I2) 

to determine when convergence has occurred. Here F is the hydrodynamic force per 
unit velocity on either sphere of the pair, and the denominator is the hydrodynamic 
force per unit velocity on an isolated sphere. The ratio is between 0.6 and 1.3 for all 
the translational motions considered in this paper. We use the magnitude of analogous 
ratios to determine convergence when looking at T u, F", and T". Convergence of these 
ratios was sought to four significant figures. 
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A.2. Tests of numerical results 
Limits of calculations 

All programs were written in single precision and used the IMSL subroutine LSLCG 
to solve the linear systems generated by the collocation technique. 

For axisymmetric motion the hydrodynamic force was calculated for all separations, 
and frequencies of oscillations satisfying 3.5 x lop2 < h c 7.9 x lo3. In the transverse 
and rotational problems the various resistance coefficients were calculated for D 2 2.05 
and 5.7 x lov2 < h < 7.9 x lo3. 

The low-frequency asymptotic test 
From the asymptotic formula (8.1) it can be seen that plots of Re(-PU) against 

Re@), and Im(-FU) against Im(h) should yield straight lines of known slope and 
intercept. The quantity Do, that determines the slopes and intercepts, can be calculated 
exactly using the results of Stimson & Jeffery (1926) and Goldman et al. (1966) for 
problems 1 and 2, respectively. We found that the calculated points did lie along a 
straight line. The errors obtained were between 0.04 % and 2.4 %. 

For both problems 1 and 2 the agreement of the slope and intercept for the real 
part were in better agreement with the exact values than the results from the imaginary 
plots. This is to be expected as at low frequencies the real part of the calculated force 
dominates the magnitude of the ratio (A4), and the convergence criterion can be 
satisfied without the imaginary part of the force converging. As the frequency of 
oscillation increases, however, the imaginary part of the force increases relative to the 
real part and so the relative error in the imaginary part should decrease. 

High-frequency asymptotic test 
From the high-frequency form (8.2) we expect that a plot of both the real and 

imaginary parts of the force against Re (1 / A )  and Im (1 / A ) ,  respectively, should yield 
straight lines with known slopes and intercepts. This turns out to be the case, and the 
agreement between the measured and exact slopes and intercepts is even better than in 
the low-frequency comparisons, for the maximum error is only 0.2 %. 

The force-torque ratio 
Using the Lorentz reciprocal relations it can be shown that the force per unit 

rotational velocity, FD, is equal to the torque per unit translational velocity, TU.  This 
relation was used by Goldman et al. (1966) as a check on their results for resistance 
coefficients at zero frequencies. We also used this as a check on the consistency of our 
numerical results for problems 2 and 3, and found that for a given sphere separation, 
agreement was excellent for frequencies below an upper limit, A,,, say, where A,,, 
depends on the separation between the spheres. The exponential decay of the viscous 
interactions with increasing frequency, and increasing separation means that it is 
unreasonable to expect the ratio to agree with the reciprocal relation over the full range 
of the frequency parameters described above, as it is these viscous terms which are the 
origin of the induced torques and forces. 

A.3. Calculated resistance coeficients 
The forces presented in this section are normalized by the force on an isolated sphere 
(5.7). We will only present the results for P,: and FY as all the resistance quantities 
needed for our work have previously been calculated by Clercx (1991). Rotational 
motions have little effect on the transverse dynamic mobility (§8), and FY is the most 
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FIGURE 7. The hydrodynamic resistance coefficient F f  as a function of frequency, at various 

centre to centre separations. 

important resistance coefficient in (7.14). FF is the only quantity needed for the 
axisymmetric dynamic mobility. 

Axisymmetric motion 
The magnitude and phase of the resistance coefficient FY in (7.7) is presented in 

figure 7. The very rapid approach of the high-frequency ratio to unity as D varies from 
2 to 10 is due to the short range r-3 interactions characteristic of potential flow. At low 
frequencies the interaction drops off like r-l and so the drag coefficient approaches 
unity much more slowly as D increases. 

In axisymmetric motion the fluid velocity at points on the axis is always in the 
direction of the motion of the sphere generating the flow. Hence the spheres convect 
each other in the direction of motion, and the hydrodynamic drag ratio is always less 
than one. 
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FIGURE 8. The hydrodynamic resistance coefficient FY as a function of frequency, at various 

centre to centre separations. 

Transverse motion 
The resistance coefficient FY in (7.7) is shown in figure 8. 
Again the drag ratio is less than one at low frequencies, as the flow generated by each 

sphere convects the other in the direction of motion. At high frequencies flow directly 
above a sphere is in the opposite direction to the velocity of the sphere, and the drag 
is greater for either sphere of a pair than for an isolated sphere. 

A.4. Basset force calculation 
The Basset force of a sphere pair has not been discussed in the literature before. We 
calculated the Basset force coefficient B using the formula (8.3). The calculation 
involves the determination of the surface velocity U, for irrotational flow around the 
sphere-pair. For the transverse case we determined B using the form of the velocity 
potential given by Reed & Morrison (1976) in their work on electrophoresis. For the 
axisymmetric case we used the stream function formulation derived by Jeffery (1912). 



634 P. I;. Rider and R. W. O’Brien 

(4 I 1 1 1 1 1 1 1 1 1 1 1 1  

BISn 

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  
D = d/a 

1.25 

1.20 

1.15 

1.10 

1.05 

1 .oo 

0.95 1 
2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

D = d a  

FIGURE 9. The Basset force for equal spheres moving with equal velocities as a function of centre 
to centre separation for (a) axisymmetric motion, and (b) transverse motion. 

As we mentioned at the start of Q 8, it is possible to determine analytically the stream 
function for the potential flow field for the axisymmetric problem. As this result has not 
been reported before, we present it here. 

Jeffery (1912) gives the following form for the stream function in bipolar coordinates 

E and 8 are the bipolar coordinates. p = cos 8, a = a sinh to, and coth to = d/2a. 

functions V,@) are defined by (Stimson & Jeffery 1926) 
This stream function is appropriate in a frame in which the spheres are at rest. The 
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Using the boundary conditions appropriate for potential flow we find the coefficients 
a, to be 

d2Uo12n(n + 1) exp [ - (n +;) to] 
(2n + 1) cosh ((n + i) 5,) u, = 

It is necessary to evaluate the integral in (8.3) numerically. In figure 9 we plot B/67c as 
a function of sphere separation for both axisymmetric and transverse motions. (67c is 
the Basset force coefficient for an isolated sphere.) It can be seen that the interactions 
in the Basset force are short-ranged. The origin of this is the rP3 decay of the velocity 
field for an isolated sphere in potential flow. 
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